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NORMAL HOPF SUBALGEBRAS

OF SEMISIMPLE HOPF ALGEBRAS

SEBASTIAN BURCIU

(Communicated by Martin Lorenz)

Abstract. The notion of kernel of a representation of a semisimple Hopf
algebra is introduced. Similar properties to those of the kernel of a group rep-
resentation are proved in some special cases. In particular, every normal Hopf
subalgebra of a semisimple Hopf algebra H is the kernel of a representation of
H. The maximal normal Hopf subalgebras of H are described.

Introduction

In this paper the notion of kernel of a representation of a finite dimensional
semisimple Hopf algebra is proposed. Similar properties to those of the kernel of a
group representation are proved in some special cases.

Let G be a finite group and X : G → EndC(M) be a finite dimensional complex
representation of G which affords the character χ. The kernel of the representation
M is defined as ker χ = {g ∈ G| χ(g) = χ(1)}, and it is the set of all group
elements g ∈ G which act as the identity on M . (For example, see [2].) Every
normal subgroup N of G is the kernel of a character, namely the character of the
regular representation of G/N . If Z = {g ∈ G| |χ(g)| = χ(1)}, then Z is called the
center of the character χ, and it is the set of group elements of G which acts as a
unit scalar on M . The properties of Z and ker χ are described in Lemma 2.27 [2],
which asserts that Z/ker χ is a cyclic subgroup of the center of G/ker χ.

If M is a representation of a finite dimensional semisimple Hopf algebra H and
χ ∈ C(H) is its associated character, then ker χ ⊂ H is defined to be the set
of all irreducible H∗-characters d ∈ H such that d acts as the scalar ε(d) on M .
We prove that ker χ = {d ∈ Irr(H∗)| χ(d) = ε(d)χ(1)}. Similarly, the set of all
irreducible H∗-characters d ∈ H that act as a scalar of absolute value ε(d) on M is
characterized as zχ = {d ∈ Irr(H∗)| |χ(d)| = ε(d)χ(1)}.

Section 1 presents the definitions and the main properties of the kernel of a
character χ and its center z

χ
. It is shown that these sets of characters are closed

under multiplication and under the duality operation “ ∗ ”. Thus they generate
Hopf subalgebras of H, denoted by Hχ and Zχ , respectively. We say that a Hopf
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subalgebraK ofH is the kernel of a representation ifK = H
χ
for a certain character

χ of H.
Section 2 studies the relationship between normal Hopf subalgebras and the Hopf

algebras generated by kernels. It is shown that any normal Hopf subalgebra is the
kernel of a character which is central in H∗.

In Section 3 the converse of the above statement is proven. More precisely, it is
shown that for a representation M of H affording a character χ which is central in
H∗, the Hopf subalgebra Hχ is normal in H. This implies that a Hopf subalgebra
is normal if and only if it is the kernel of a character which is central in the dual
Hopf algebra. Under the same assumption on χ it is shown that the irreducible
representations of H//Hχ := H/HH+

χ
are precisely the irreducible representations

of H which are constituents of some tensor power of M . Using a basis description
given in [14] for the algebra generated by the characters which are central in H∗, we
describe a finite collection of normal Hopf subalgebras of H which are the maximal
normal Hopf subalgebras ofH (under inclusion). Any other normal Hopf subalgebra
is an intersection of some of these Hopf algebras. Two other results that hold for
group representations are presented in this section.

In this paper we work over the base field C. For a vector space V , |V | de-
notes the dimension dimCV . We use Sweedler’s notation, ∆(x) =

∑
x1 ⊗ x2, for

comultiplication. All other notation is the same as that used in [7].

1. Properties of the kernel

Let H be a finite dimensional semisimple Hopf algebra over C. Then H is also
cosemisimple [5]. Denote by Irr(H) the set of irreducible characters of H and by
C(H) the character ring of H. Then C(H) is a semisimple subalgebra of H∗,
[15] and C(H) = Cocom(H∗), the space of cocommutative elements of H∗. By
duality, the character ring of H∗ is a semisimple subalgebra of H, and under this
identification it follows that C(H∗) = Cocom(H). If M is an H-module with
character χ, then M∗ is also an H-module with character χ∗ = χ ◦S. This induces
an involution “ ∗ ” : C(H) → C(H) on C(H).

Recall that the exponent of H is the smallest positive number m > 0 such that
h[m] = ε(h)1 for all h ∈ H. The generalized power h[m] is defined by h[m] =∑

(h) h1h2...hm. The exponent of a finite dimensional semisimple Hopf algebra is

always finite and divides the third power of the dimension of H [1].

Remark 1.1. Let W be a simple H∗-module. ThenW is a simple right H-comodule,
and one can associate to it a simple subcoalgebra of H denoted by CW [4]. If
q = |W |, then |C

W
| = q2 and CW is a matrix coalgebra. It has a basis {xij}1≤i,j≤q

such that ∆(xij) =
∑q

l=1 xil ⊗ xlj for all 1 ≤ i, j ≤ q. Moreover, W ∼= C < x1i| 1 ≤
i ≤ q > as right H-comodules, where ρ(x1i) = ∆(x1i) =

∑q
l=1 x1l ⊗ xli for all

1 ≤ i ≤ q. The character of W as a left H∗-module is d ∈ C(H∗) ⊂ H, and it
is given by d =

∑q
i=1 xii. Then ε(d) = q, and the simple subcoalgebra CW is also

denoted by Cd.

Proposition 1.2. Let H be a finite dimensional semisimple Hopf algebra and let M
be a representation of H affording the character χ ∈ C(H). If W is an irreducible
representation of H∗ affording the character d ∈ C(H∗), then the following hold:

(1) |χ(d)| ≤ χ(1)ε(d).
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(2) Equality holds if and only if d acts as αε(d)Id
M

on M for some root of
unity α ∈ C.

Proof. (1) W is a right H-comodule, and one can define a map T which is
similar to the one defined in Paragraph 3.1 of [3]:

T : M ⊗W −→ M ⊗W
m⊗ w �−→

∑
w1m⊗ w0.

It can be checked that Tp(m ⊗ w) =
∑

w
[p]
1 m ⊗ w0 for all p ≥ 0. Thus,

if m = exp(H), then Tm = Id
M⊗W

. Therefore T is a semisimple operator
and all its eigenvalues are roots of unity. It follows that tr(T) is the sum of
all these eigenvalues and consequently |tr(T)| ≤ dimC(M ⊗W ) = χ(1)ε(d).
It is easy to see that tr(T) = χ(d). Indeed, using the above remark one can
suppose that W = C < x1i | 1 ≤ i ≤ q > where C

W
= C < xij | 1 ≤ i, j ≤

q > is the coalgebra associated to W . Then the formula for T becomes

T(m ⊗ x1i) =
∑ε(d)

j=1 xjim ⊗ x1j , which shows that tr(T) =
∑ε(d)

i=1 χ(xii) =

χ(d).
(2) Equality holds if and only if T = αIdM⊗W for some root of unity α. The

above expression for T implies that in this case xijm = δi,jαm for any
1 ≤ i, j ≤ ε(d). Therefore dm = αε(d)m for any m ∈ M . The converse is
immediate. �

Let M be a representation of H which affords the character χ. Define ker χ
as the set of all irreducible characters d ∈ Irr(H∗) which act as the scalar ε(d) on
M . The previous proposition implies that ker χ = {d ∈ Irr(H∗)| χ(d) = ε(d)χ(1)}.
Similarly let z

χ
be the set of all irreducible characters d ∈ Irr(H∗) which act as a

scalar αε(d) on M , where α is a root of unity. Then from the same proposition it
follows that zχ = {d ∈ Irr(H∗)| |χ(d)| = ε(d)χ(1)}. Clearly ker χ ⊂ zχ .

Remark 1.3. (1) The proof of Proposition 1.2 implies that for a representation
M of H affording a character χ ∈ C(H) and an irreducible character d ∈
Irr(H∗) the following assertions are equivalent:

1) d ∈ ker χ.
2) χ(d) = ε(d)χ(1).
3) χ(xij) = δijχ(1) for all i, j.
4)dm = ε(d)m for all m ∈ M .
5) xijm = δijm for all i, j and all m ∈ M .

(2) Similarly one has the following equivalences:
1) d ∈ zχ .
2) |χ(d)| = ε(d)χ(1).
3) There is a root of unity α ∈ C such that χ(xij) = αδijχ(1) for all i, j.
4) There is a root of unity α ∈ C such that dm = αε(d)m for all m ∈ M .
5) There is a root of unity α ∈ C such that xijm = αδijm for all i, j and

all m ∈ M .
(3) Let Irr(H) = {χ0, · · · , χs} be the set of all irreducible H-characters

and let M be a representation of H which affords the character χ. If
χ =

∑s
i=0 miχi where mi ∈ Z≥0, then ker χ =

⋂
mi �=0 ker χi ⊂ zχ ⊂⋂

mi �=0 z
χi
.
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A subset X ⊂ Irr(H∗) is closed under multiplication if for every χ, µ ∈ X in
the decomposition of χµ =

∑
γ∈Irr(H∗) mγγ one has γ ∈ X if mγ 
= 0. A subset

X ⊂ Irr(H∗) is closed under “ ∗ ” if x∗ ∈ X for all x ∈ X.

Proposition 1.4. Let H be a finite dimensional semisimple Hopf algebra and M
a representation of H affording the character χ ∈ C(H). Then the subsets ker χ
and zχ of Irr(H∗) are closed under multiplication and under “ ∗ ”.

Proof. Proposition 1.2 implies that χ(d) = ε(d)χ(1) if and only if d acts as ε(d)IdM

on M . Therefore if d ∈ ker χ, then d∗ = S(d) ∈ ker χ since χ(d∗) = χ(d) [10]. Let
d, d′ ∈ ker χ. Then dd′ acts as ε(dd′)IdM on M since d acts as ε(d)IdM and d′ acts
as ε(d′)IdM on M . Write dd′ =

∑q
i=1 midi where di are irreducible characters of

H∗ and mi 
= 0 for all 1 ≤ i ≤ q. Then χ(dd′) =
∑q

i=1 miχ(di) and

χ(1)ε(dd′) = |χ(dd′)| ≤
q∑

i=1

mi|χ(di)| ≤ χ(1)

q∑
i=1

miε(di) = χ(1)ε(dd′).

It follows from Proposition 1.2 that χ(di) = χ(1)ε(di) and therefore di ∈ ker χ for
all 1 ≤ i ≤ q. The proof for zχ is similar. �

Remark 1.5. (1) For later use let us note that ker χ ⊂ ker χn for all n ≥
0. Indeed if d ∈ Irr(H∗) is an element of ker χ, then one has a simple

subcoalgebra Cd associated to d and d =
∑ε(d)

i=1 xii. Item (1) of Remark 1.3
implies that χ(xij) = χ(1)δij . Thus

χn(d) =

ε(d)∑
i=1

ε(d)∑
i1,··· ,in−1=1

χ(xii1)χ(xi1i2) · · ·χ(xin−1i) = χ(1)nε(d).

Similarly it can be shown that zχ ⊂ z
χn for all n ≥ 0.

(2) If X ⊂ Irr(H∗) is closed under multiplication and under “ ∗ ”, then it gener-
ates a Hopf subalgebra of H denoted by HX [9]. One has HX =

⊕
d∈X Cd.

Using this, since the sets ker χ and zχ are closed under multiplication and
under “ ∗ ”, they generate Hopf subalgebras of H denoted by H

χ
and Z

χ
,

respectively.
(3) The proof of Proposition 1.2 implies that χ ↓Hχ

= χ(1)εHχ
, where χ ↓Hχ

is

the restriction of χ to the subalgebra H
χ
and ε

Hχ
is the character of the

trivial module over the Hopf algebra H
χ
.

(4) Suppose that M and N are two H-modules affording the characters χ and
µ. If M is a submodule of N , then it can easily be seen that ker µ ⊂ ker χ
and consequently that H

µ
⊂ H

χ
.

2. Normal Hopf subalgebras

As before let H be a finite dimensional semisimple Hopf algebra over C. We use
the notation ΛH ∈ H for the idempotent integral of H (ε(ΛH) = 1) and tH ∈ H∗

for the idempotent integral of H∗ (tH(1) = 1). From Proposition 4.1 of [4] it follows
that the regular character of H is given by the formula

(2.1) |H|tH =
∑

χ∈Irr(H)

χ(1)χ.
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The dual formula is

(2.2) |H|Λ
H
=

∑
d∈Irr(H∗)

ε(d)d.

One also has t
H
(Λ

H
) = 1

|H| [5].

If K is a Hopf subalgebra of H, then K is a semisimple and cosemisimple Hopf
algebra [7]. A Hopf subalgebra K of H is called normal if h1xS(h2) ∈ K and
S(h1)xh2 ∈ K for all x ∈ K and h ∈ H. If H is a semisimple Hopf algebra as
above, then S2 = Id (see [5]) and K is normal in H if and only if h1xS(h2) ∈ K for
all x ∈ K and h ∈ H. If K+ = Ker(ε)∩K, then K is a normal Hopf subalgebra of
H if and only if HK+ = K+H. In this situation H//K := H/HK+ is a quotient
Hopf algebra of H via the canonical map π : H → H//K (see Lemma 3.4.2 of [7]).
In our setting, K is normal in H if and only if Λ

K
is central in H (see Lemma 1 on

page 1932 of [6]).

Remark 2.3. Suppose that K is a normal Hopf subalgebra of H and let L = H//K
be the quotient Hopf algebra ofH via π : H → L. Then π∗ : L∗ → H∗ is an injective
Hopf algebra map. It follows that π∗(L∗) is normal in H∗ and it is easy to see that
(H∗//L∗)∗ ∼= K. The representations of L = H//K are those representations M
of H such that each x ∈ K acts as ε(x)IdM on M . If χ is the character of M as an
L-module, then π∗(χ) ∈ C(H) is the character of M as an H-module and with the
above notation, H

π∗(χ)
⊃ K.

Notation: Let µ be any irreducible character of H and let ξ
µ
∈ Z(H) be the

central primitive idempotent associated to it. Then ν(ξµ) = δµ, νµ(1) for any other
irreducible character ν ofH and {ξµ}µ∈Irr(H)

is the complete set of central orthogonal
idempotents of H. Dually, since H∗ is semisimple to any irreducible character
d ∈ C(H∗), one has an associated central primitive idempotent ξd ∈ Z(H∗). As
before one can view d as being in H∗∗ = H, and the above relation becomes
ξd(d

′) = δd, d′ε(d) for any other irreducible character d′ ∈ C(H∗). Also {ξ
d
}
d∈Irr(H∗)

is the complete set of central orthogonal idempotents of H∗.
We say that a Hopf subalgebra K of H is the kernel of a character if K = H

χ

for some character χ ∈ C(H). The following is the main result of this section.

Theorem 2.4. Let H be a finite dimensional semisimple Hopf algebra. Any normal
Hopf subalgebra K of H is the kernel of a character which is central in H∗. More
precisely, with the above notation one has

K = H|L|π∗(t
L

)
.

Proof. Let L = H//K. Then L is a semisimple and cosemisimple Hopf algebra
[7]. The above remark shows that the representations of L are exactly those rep-
resentations M of H such that Hχ

M
⊃ K where χM is the H-character of M . Let

π : H → L be the natural projection and let π∗ : L∗ → H∗ be its dual map.
Then π∗ is an injective Hopf algebra map and L∗ can be identified with a Hopf
subalgebra of H∗. Therefore, if tL ∈ L∗ is the idempotent integral of L, then |L|tL
is the regular character of L and H|L|π∗(t

L
) ⊃ K. Since π∗(L∗) is a normal Hopf

subalgebra of H∗ it follows that π∗(tL) is a central element of H∗. We have to show
that H|L|π∗(t

L
)
= K and the proof will be complete.
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With the above notation, since π∗(t
L
) is a central idempotent of H∗, one can

write it as a sum of central primitive orthogonal idempotents:

π∗(tL) =
∑
d∈X

ξd

where X is a subset of Irr(H∗). It follows that for any d ∈ Irr(H∗) one has that
π∗(t

L
)(d) = ε(d) if d ∈ X and π∗(t

L
)(d) = 0 otherwise, which shows that X =

ker |L|π∗(t
L
). Since H|L|π∗(t

L
)
⊃ K, one has π∗(t

L
)(d) = ε(d) for all d ∈ Irr(K∗)

and thus Irr(K∗) ⊂ X. Let Λ
H
∈ H and Λ

L
∈ L be the idempotent integrals of H

and L. Since π is a surjective Hopf algebra map, one has π(ΛH) = Λ
L
. Then

π∗(tL)(ΛH ) = tL(π(ΛH )) = tL(ΛL) =
1

|L| .

On the other hand, since ΛH = 1
|H|

∑
d∈Irr(H∗) ε(d)d it follows that

π∗(t
L
)(Λ

H
) =

1

|H|
∑
d∈X

ε(d)2,

which implies that
∑

d∈X ε(d)2 = |H|
|L| = |K|. Since

∑
d∈Irr(K∗) ε(d)

2 = |K| and
Irr(K∗) ⊂ X, we conclude that Irr(K∗) = X and H|L|π∗(t

L
)
= K. �

Let C be the trivial K-module via the augmentation map ε
K
. Denote by ε ↑HK :=

ε
K
↑HK the character of the induced module H ⊗K C.

Corollary 2.5. Let K be a Hopf subalgebra of H. Then K is normal in H if and
only if H

ε↑HK
= K.

Proof. Suppose K is a normal Hopf subalgebra of H. With the notation from
the above theorem, since ε ↑HK= |L|π∗(tL) and H|L|π∗(t

L
)
= K, it follows that

H
ε↑HK

= K. Conversely, suppose that H
ε↑HK

= K. Then by using the third item of

Remark 1.5 it follows that ε↑HK↓HK = |H|
|K| εK . Using Frobenius reciprocity this implies

that for any irreducible character χ of H the value of m(χ ↓K , εK) = m(χ, ε ↑HK) is
either χ(1) if χ is a constituent of ε ↑HK or 0 otherwise. But if Λ

K
is the idempotent

integral of K, then m(χ ↓K , ε
K
) = χ(Λ

K
). Thus χ(Λ

K
) is either zero or χ(1) for

any irreducible character χ of H. This implies that Λ
K

is a central idempotent
of H and therefore that K is a normal Hopf subalgebra of H by [6] (see also
Proposition 1.7.2 of [8]). �

3. Central characters

Let H be a finite dimensional semisimple Hopf algebra over C. Consider the
central subalgebra of H defined by Ẑ(H) = Z(H) ∩ C(H∗). It is the algebra of

H∗-characters which are central in H. Let Ẑ(H∗) := Z(H∗) ∩ C(H) be the dual
object, namely the subalgebra of H-characters which are central in H∗.

Let φ : H∗ → H be given by f �→ f ⇁ Λ
H

where f ⇁ Λ
H

= f(S(Λ
H 1

))Λ
H 2

.

Then φ is an isomorphism of vector spaces [7].

Remark 3.1. With the notation from the previous section, it can be checked that

φ(ξd) = ε(d)
|H| d

∗ and φ−1(ξχ) = χ(1)χ for all d ∈ Irr(H∗) and χ ∈ Irr(H) (see for

example [7]).
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We use the following description of Ẑ(H∗) and Ẑ(H) as given in [14]. Since
φ(C(H)) = Z(H) and φ(Z(H∗)) = C(H∗), it follows that the restriction

φ|
Ẑ(H∗)

: Ẑ(H∗) → Ẑ(H)

is an isomorphism of vector spaces.
Since Ẑ(H∗) is a commutative semisimple algebra it has a vector space basis

given by its primitive idempotents. Since Ẑ(H∗) is a subalgebra of Z(H∗) each

primitive idempotent of Ẑ(H∗) is a sum of primitive idempotents of Z(H∗). But
the primitive idempotents of Z(H∗) are of the form ξd where d ∈ Irr(H∗). Thus,
there is a partition {Yj}j∈J of the set of irreducible characters of H∗ such that the
elements (ej)j∈J given by

ej =
∑
d∈Yj

ξd

form a basis for Ẑ(H∗). Note that ej(d) = ε(d) if d ∈ Yj and ej(d) = 0 if d /∈ Yj .

Since φ(Ẑ(H∗)) = Ẑ(H) it follows that êj := |H|φ(ej) is a basis for Ẑ(H). Using
the first formula from Remark 3.1 one has

êj =
∑
d∈Yj

ε(d)d∗.

Remark 3.2. (1) By duality, the set of irreducible characters of H can be par-
titioned into a finite collection of subsets {Xi}i∈I such that the elements
(fi)i∈I given by

fi =
∑
χ∈Xi

χ(1)χ

form a C-basis for Ẑ(H∗). Then the elements φ(fi) =
∑

χ∈Xi
ξχ are the

central orthogonal primitive idempotents of Ẑ(H) and therefore form a
basis for this space. Clearly |I| = |J |.

(2) Let M be a representation of a semisimple Hopf algebra H. Consider
the set C of all simple representations of H which are direct summands
in some tensor power M⊗ n. Then C is closed under tensor products and
under “ ∗ ” and thus generates a Hopf algebra L which is a quotient of H
(see [12] or [13]). Note that if C ⊂ Irr(H) is closed under multiplication
and under “ ∗ ”, then from the dual version of item (2) of Remark 1.5
it follows that C generates a Hopf subalgebra H∗

C of H∗. It follows that
L = (H∗

C)
∗ (see also Proposition 3.11 of [11]). If M has character χ ∈ H∗,

then the character π∗(t
L
) ∈ C(H) can be expressed as a polynomial in χ

with rational coefficients (see Corollary 19 of [10]).

Proposition 3.3. Suppose χ is a character of H which is central in H∗. Then H
χ

is a normal Hopf subalgebra of H and the simple representations of H//H
χ
are the

simple constituents of all the powers of χ.

Proof. Since χ ∈ Ẑ(H∗), with the above notation one has χ =
∑

j∈J α
j
ej , where

αj ∈ C. It follows that χ(d) = αj ε(d) if d ∈ Yj . Therefore if d ∈ Yj , then d ∈ ker χ
if and only if αj = χ(1). This implies that ker χ is the union of all the sets Yj such
that α

j
= χ(1). Using formula (2.2) the integral |H

χ
|ΛHχ

can be written as

|H
χ
|ΛHχ

=
∑

d∈ker χ

ε(d)d =
∑

{j | αj=χ(1)}

∑
d∈Yj

ε(d)d
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and therefore

|H
χ
|ΛHχ

= |H
χ
|S(ΛHχ

) =
∑

{j | αj=χ(1)}

∑
d∈Yj

ε(d)d∗ =
∑

{j | αj=χ(1)}
êj .

Then ΛHχ
is central in H since each êj is central in H. As above this implies that

H
χ
is normal in H.
Let V be an H-module with character χ and let I =

⋂
m≥0 Ann(V ⊗ m). If L is

the quotient Hopf algebra of H generated by the constituents of all the powers of
χ, then from [13] or [12] one has that L = H/I. Note that I ⊃ HH+

|L|π∗(t
L

)
. Using

item (2) of Remark 3.2 one obtains that π∗(t
L
) is a polynomial in χ with rational

coefficients. Since χ is central in H∗ it follows that π∗(t
L
) is a central element of H∗

and thus that L∗ is a normal Hopf subalgebra of H∗. Using (2.3) (for L∗ ↪→ H∗),
it follows that H//(H∗//L∗)∗ = L. Then if K = (H∗//L∗)∗, one has H//K = L.
Theorem 2.4 implies that H|L|π∗(t

L
)
= K; thus H//H|L|π∗(t

L
)
= H//K = L. But

L = H/I, and since I ⊃ HH+
|L|π∗(t

L
)
it follows that HH+

|L|π∗(t
L

)
= I. It is easy to

see that HH+
χ

⊂ I since the elements of H
χ
act as ε on each tensor power of V (see

item (1) of Remark 1.5).
On the other hand |L|t

L
is the regular character of L. Then ker χ ⊃ ker |L|π∗(t

L
)

since χ is a constituent of |L|π∗(tL). Thus I ⊃ HH+
χ ⊃ HH+

|L|π∗(t
L

)
. Since

HH+
|L|π∗(t

L
)
= I it follows that HH+

χ = I and thus H//H
χ
= L. �

Theorem 2.4 and the previous proposition imply the following corollary:

Corollary 3.4. A Hopf subalgebra of H is normal if and only if it is the kernel of
a character χ which is central in H∗.

Let Hi := H
fi
; see Remark 3.2 for the definition of fi. From Proposition 3.3

it follows that Hi is a normal Hopf subalgebra of H. If K is any other normal
Hopf subalgebra of H, then Theorem 2.4 implies that K = Hχ for some central
character χ. Following [14], one has χ =

∑
i∈I′ mifi for some rational positive

numbers mi and some subset I ′ ⊂ I. Then ker χ =
⋂

i∈I′ ker fi, which implies
that Hχ =

⋂
i∈I′ Hi. Thus any normal Hopf subalgebra is an intersection of some

of these Hopf algebras Hi.

Remark 3.5. If K and L are normal Hopf subalgebras of H, then it is easy to see
that KL = LK is a normal Hopf subalgebra of H that contains both K and L.

Let L be any Hopf subalgebra of H. We define core(L) to be the biggest Hopf
subalgebra of L which is normal in H. Based on Remark 3.5 clearly core(L) exists
and is unique. If A is a Hopf subalgebra of H, then there is an isomorphism of
H-modules H/HA+ ∼= H ⊗A C given by h̄ �→ h ⊗A 1. Thus if A ⊂ B ⊂ H are
Hopf subalgebras of H, then ε ↑H

B
is a constituent of ε ↑H

A
since there is a surjective

H-module map H/HA+ → H/HB+.

Remark 3.6. Suppose χ and µ are the characters of two representations M and
N of H such that µ is central in H∗ and χ is an irreducible character which is
a constituent of µ. From item (1) of Remark 3.2 it follows that χ ∈ Xi0 for
some i0 ∈ I. Since µ is central in H∗ it follows that µ is a linear combination
with nonnegative rational coefficients of the elements fi. Since χ is a constituent
of µ it follows that fi0 is also a constituent of an integral multiple of µ. Thus
ker µ ⊂ ker fi0 .
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Theorem 3.7. If χ is an irreducible character of H such that χ ∈ Xi for some
i ∈ I, then core(H

χ
) = H

fi
.

Proof. Let K = core(H
χ
). Since χ is a constituent of fi, by item (4) of Remark 1.5

one has that H
fi

⊂ Hχ . The normality of H
fi

implies that H
fi

⊂ K. By the

proof of Corollary 2.5 µ := ε ↑H
K

is the H-character of H//K = H/K+H and is
central in H∗. Since χ ↓Hχ

= χ(1)εHχ
and K ⊂ H

χ
it follows that χ ↓

K
= χ(1)ε

K
.

By Frobenius reciprocity one has that χ is a constituent of the character µ. Using
Remark 3.6 we then have ker fi ⊃ ker µ and H

fi
⊃ Hµ = K. �

Remark 3.8. Item (3) of Remark 1.5 implies that χ is a constituent of ε ↑HHχ
and

therefore that Hχ ⊇ H
ε↑H

Hχ

. Let H1 = Hχ and

Hs+1 = Hε↑H
Hs

for s ≥ 1.

The above argument implies that Hs ⊇ Hs+1. Since H is finite dimensional we
conclude that there is l ≥ 1 such that Hl = Hl+1 = · · · = Hl+n = · · · . Corollary 2.5
gives that Hl is a normal Hopf subalgebra of H. We claim that core(H

χ
) = Hl.

Indeed, for any normal Hopf subalgebra K of H with K ⊂ Hχ ⊂ H we have

that ε ↑H
Hχ

is a constituent of ε ↑H
K
, and then using Corollary 2.5 it follows that

K = H
ε↑H

K

⊆ H
ε↑HHχ

= H2. Inductively, it can be shown that K ⊂ Hs for any

s ≥ 1, which implies that core(Hχ) = Hl.

Proposition 3.9. Let H be a semisimple Hopf algebra. Then
⋂

χ∈Irr(H)

z
χ
= Ḡ(H)

where Ḡ(H) is the set of all central grouplike elements of H.

Proof. Any central grouplike element g of H acts as a scalar on each simple H-
module. Since gexp(H) = 1 it follows that this scalar is a root of unity and then

Ḡ(H) ⊂
⋂

χ∈Irr(H)

zχ .

Let d ∈
⋂

χ∈Irr(H)
z
χ
. If C

d
is the simple subcoalgebra of H associated to d (see

Remark 1.1), then d =
∑ε(d)

i=1 xii. Item (2) of Remark 1.3 implies that xij acts as
δi,jαχIdMχ

on Mχ where αχ is a root of unity. For i 
= j, it follows that xij acts
as zero on each irreducible representation of H. Therefore xij = 0 for all i 
= j
and d is a grouplike element of H. Since d acts as a scalar on each irreducible
representation of H we have d ∈ Z(H) and therefore d ∈ Ḡ(H). �

The next theorem is the generalization of the fact that Z/ker χ is a cyclic sub-
group of G/ker χ for any character of the finite group G.

Theorem 3.10. Let M be a representation of H such that its character χ is central
in H∗. Then Zχ is a normal Hopf subalgebra of H and Zχ//Hχ is the group algebra

of a cyclic subgroup of CḠ(H//H
χ
).
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Proof. Since χ ∈ Ẑ(H∗) one can write χ =
∑

j∈J αjej with αj ∈ C. A similar
argument to the one in Proposition 3.3 shows that

|Z
χ
|Λ

Zχ
= |Z

χ
|S(Λ

Zχ
) =

∑
{j | |αj | =χ(1)}

∑
d∈Yj

ε(d)d∗ =
∑

{j | |αj | =χ(1)}
êj .

Therefore Λ
Zχ

is central in H and Z
χ

is a normal Hopf subalgebra of H. Let

π : H → H//H
χ
be the canonical projection. Since H is a free Z

χ
-module there is

also an injective Hopf algebra map i : Zχ//Hχ → H//Hχ such that i(z̄) = π(z) for
all z ∈ Zχ . Proposition 3.3 implies that the irreducible representations of H//Hχ

are precisely the irreducible constituents of tensor powers of χ. From item (1) of
Remark 1.5 it follows that Z

χ
⊂ Z

χl
for any nonnegative integer l. Let d ∈ z

χ
and

let C
d
=< xij > be the coalgebra associated to d as in Remark 1.1. Item (2) of

Remark 1.3 implies that for i 
= j the element xij acts as zero on any tensor power
of χ and therefore its image under π is zero. Since π is a coalgebra map, one has

∆(π(xii)) =

ε(d)∑
j=1

π(xij)⊗ π(xji) = π(xii)⊗ π(xii).

Thus π(xii) is a grouplike element of H//H
χ
. Since π(xii) acts as a scalar on

each irreducible representation of H//H
χ
it follows that π(xii) is a central grou-

plike element of H//Hχ . This proves that the image under i of Zχ//Hχ is inside

CḠ(H//H
χ
). The grouplike elements that act as a scalar on the representation M

of H//H
χ
form a cyclic group by Theorem 5.4 of [3] and the proof is finished. �

Remark 3.11. If χ ∈ Ẑ(H∗) is an irreducible character of H, then Proposition 3.3
together with Theorem 5.4 of [3] implies that Ḡ(H//Hχ) is a cyclic group of order
equal to the index of the character χ.
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